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SUMMARY 

This r e p o r t  descr ibes  a f e a s i b i l i t y  study f o r  upgrading the  NASA Langley 4- by 
7-Meter Tunnel so that it may be used f o r  aeroacoust ic  research  r e l a t e d  t o  helicop- 
ters. Although rotor noise research i n  wind tunnels  is not  a new concept, t h e  
requirements f o r  noise  research leading t o  the  design of t he  next  generat ion of 
he l i cop te r s  impose a set of acous t i c  tes t  cri teria t h a t  no e x i s t i n g  wind tunnel  i n  
t h e  United States can p resen t ly  m e e t .  

Included i n  t h i s  f e a s i b i l i t y  study are the  following considerat ions:  (1) an 
eva lua t ion  of genera l  wind-tunnel requirements f o r  he l i cop te r  aeroacous t ic  research,  
inc luding  the  establ ishment  of des i red  tunnel  background noise  l e v e l s  f o r  such 
research,  ( 2 )  an assessment of the  present  acous t i c  environment f o r  t e s t i n g  model 
rotors i n  the  Langley 4- by 7-Meter Tunnel, ( 3 )  a d iagnos t i c  i nves t iga t ion  of tunnel  
background noise  sources  and paths ,  ( 4 )  the  establ ishment  of acous t i c  t reatment  
op t ions  f o r  tunnel  background noise  reduct ion and a desc r ip t ion  of a trade-off s tudy 
between these  opt ions,  (5) an engineering f e a s i b i l i t y  assessment of the  s e l e c t e d  
opt ion ,  and (6) a f i n a l  i n t eg ra t ed  ana lys i s  of the var ious s tudy components and 
recommendations for  an approach t o  meet the tunnel  background noise  reduct ion goal .  

I t  is concluded that  the  Langley 4- by 7-Meter Tunnel is  a fundamentally s u i t -  
ab l e  f a c i l i t y  f o r  he l i cop te r  aeroacoust ic  research. It  is a l s o  concluded t h a t  acous- 
t i c  t reatment  of t h i s  f a c i l i t y  f o r  meeting the  required tunnel  background noise  goal  
can be accomplished t echn ica l ly  a t  reasonable r i s k  and cos t .  

1 INTRODUCTION 

The use of he l i cop te r s  i n  the  c i v i l  a i r  t r anspor t a t ion  market i s  projected t o  
increase .  I f  p resent  acous t i c  design technology i s  used f o r  t h i s  f u t u r e  commercial 
market, then unacceptable community noise  l eve l s  may be an t i c ipa t ed .  Research i n  
q u i e t  he l i cop te r  technology is  urgent ly  needed now so t h a t  t he  new generat ion of 
r o t o r c r a f t  w i l l  m e e t  acceptable community noise  s tandards.  NASA’s commitment t o  a 
long-term j o i n t  research and development program with major U.S, he l i cop te r  manufac- 
t u r e r s  - r e fe r r ed  t o  as the  “NASA/American Helicopter Socie ty  ( A H S )  National Rotor- 
c r a f t  Noise Reduction Program” - w a s  made i n  response t o  t h i s  an t i c ipa t ed  he l i cop te r  
no i se  problem (ref.  1). 

The u l t ima te  ob jec t ive  of the  NASA/AHS program is t o  provide technology f o r  pre- 
d i c t i n g  and reducing noise  r a d i a t i o n  f r o m  he l i cop te r s  a t  the  design state. A c r i t i -  
ca l  requirement f o r  t h i s  needed research is a high-qual i ty  low-speed wind tunnel  
s u i t a b l e  f o r  aeroacous t ic  research of powered scale model he l i cop te r s .  

A wind tunnel  i s  e s s e n t i a l  f o r  r o t o r c r a f t  no ise  research  because of aeroacous t ic  
e f f e c t s  t h a t  e x i s t  only i n  forward f l i g h t  and, therefore ,  cannot be inves t iga ted  by 
the  s tudy of hovering rotors, The complex na ture  of the noise  f i e l d  generated by a 
he l i cop te r  r o t o r  system is s t rong ly  dependent on the  h ighly  d i s t o r t e d  three- 
dimensional flow crea ted  by the  ro to r  blades.  This flow can involve n o n l i n e a r i t i e s  
and t r a n s i e n t  e f f e c t s  t h a t  are not  p re sen t  i n  the  flow over hovering rotors. 



Rotor noise  research  i n  wind tunnels  is not  a new concept. Acoustic measure- 
ments have been made f o r  many years on scale model r o t o r  systems i n  wind tunnels .  
(For example, see r e f s .  2 t o  7.) Although the wind-tunnel/model-rotor combination 
has been shown t o  be a highly e f f e c t i v e  experimental  conf igura t ion  f o r  s tudying 
c e r t a i n  dominant mechanisms of he l i cop te r  noise  generat ion,  p a s t  research  has been 
l imi ted  by the  u n a v a i l a b i l i t y  of a wind tunnel  i n  the  U.S. t h a t  is  s u i t a b l e  f o r  a 
wide range of system noise  measurements f o r  the  model he l i cop te r .  

Accentuating the  l i m i t a t i o n  of e x i s t i n g  wind tunnels  is the  f a c t  t h a t  manufac- 
t u r e r s  now a n t i c i p a t e  fac ing  community noise  c e r t i f i c a t i o n  requirements t h a t  spec i fy  
the  use of a perceived noise  l e v e l  as a noise  metric. This category of noise  metrics 
emphasizes the  midrange frequencies  to  which the human ear is m o s t  s ens i t i ve .  The 
aeroacous t ic  broadband mechanisms t h a t  appear t o  dominate noise  generat ion i n  t h i s  
frequency region are not  f u l l y  understood and are d i f f i c u l t  ( i f  no t  impossible) t o  
measure i n  e x i s t i n g  f a c i l i t i e s  because of the  r e l a t i v e l y  high l e v e l  of f a c i l i t y  back- 
ground noise.  

Before d iscuss ing  des i r ab le  c h a r a c t e r i s t i c s  of a wind tunnel  s u i t a b l e  for acous- 
t i c  t e s t i n g ,  it is appropr ia te  t o  def ine  two terms - " tes t  section' '  and " tes t  cham- 
ber"  - t h a t  w i l l  be used i n  t h i s  repor t .  The tes t  sec t ion  i n  a l l  wind tunnels  is  
t h a t  por t ion  of the  wind-tunnel c i r c u i t  within which the  model under test is located.  
Usually,  t he  tes t  sec t ion  is  bounded by the  tunnel  w a l l s  j u s t  as i n  the  rest of the  
tunnel  c i r c u i t .  (See( f o r  example, ref. 8.) Some wind tunnels  are a l s o  designed t o  
operate i n  an open tes t  sec t ion  mode such t h a t  the  flow e x i t s  from a nozzle i n t o  one 
s i d e  of the  tes t  chamber, is co l l ec t ed  a t  the  opposi te  s i d e  of the  test chamber, and 
then is red i r ec t ed  back around the  c i r c u i t .  In  t h i s  case,  the  t es t  sec t ion  c o n s i s t s  
of the  p o t e n t i a l  core  region of the  f r e e  je t .  A schematic drawing i n  f i g u r e  1 of t he  
Langley 4- by 7-Meter Tunnel c i r c u i t ,  which may be operated i n  both open and closed 
tes t  sec t ion  modes, is used t o  i l l u s t r a t e  t h i s  concept. 

In  wind tunnels  used only for aerodynamic t e s t i n g ,  the  terms "test sec t ion"  and 
" tes t  chamber" are interchangeable;  bu t  f o r  t he  case of acous t i c  t e s t i n g  i n  which 
noise  measurements may be made i n  any p a r t  of the  tes t  chamber, including outs ide  the  
flow i t s e l f  ( t h a t  is ,  outs ide  the  tes t  s e c t i o n ) ,  the  d i s t i n c t i o n  between these  two 
terms becomes important. 

E s s e n t i a l l y ,  a wind tunnel  s u i t a b l e  f o r  acous t i c  measurements of he l i cop te r  
system noise ,  including the  rotor broadband noise  sources ,  should m e e t  the  following 
four  genera l  requirements: 

1 .  

2. 

2 

Flow q u a l i t y  ( r e f .  9) - For adequate inves t iga t ion  of aeroacoust ic  
source mechanisms, tunnel  f l o w  should be h ighly  uniform (wi th in  
0.5 percent )  and possess a very low turbulence l e v e l  (a  maximum of 
0.5 pe rcen t ) .  A l s o ,  the  mean flow unsteadiness  should be minimal 
(less than 0.5 percent ) .  

T e s t  s e c t i o n  s i z e  - Because the  mechanisms of rotor noise  generat ion 
and t h e i r  assoc ia ted  s c a l i n g  r e l a t i o n s  from model t o  f u l l - s i z e  r o t o r s  
are inadequately understood, there  is  a minimum d e s i r a b l e  scale from 
which f u l l - s c a l e  r e s u l t s  may conf ident ly  be in fe r r ed .  This minimum 
scale has been estimated from considerat ion of Reynolds number and 
known noise-generation mechanisms to  be of t he  order  of 1/5-scale. 
T h i s  t r a n s l a t e s  t o  a minimum model rotor diameter of about 2 m. Test-  
i n g  of 1/5-scale rotorcraft  models mandates the  use of a l a rge  wind 
tunnel  with a uniform f l o w  region i n  the  test sec t ion  a t  least 4 m 
wide to  allow an adequate flow-boundary c learance  f o r  the  model. 



3. Background noise  l e v e l  - Numerous p o t e n t i a l  no ise  sources  e x i s t  i n  a 
wind tunnel  and special cons idera t ion  of each poss ib l e  source is nec- 
e s sa ry  to minimize unwanted background noise  i n  both the  tunnel  t es t  
s e c t i o n  and tes t  chamber. Good acous t ic  measurement p r a c t i c e  d i c t a t e s  
t h a t  accura te  measurements of rotor noise  sources  can be made only 
when noise  from these  sources is a t  least 6 dB above the  background 
noise  a t  a l l  f requencies  of i n t e r e s t ,  Sophis t ica ted  methods f o r  ex- 
traction of lower-level noise  sources  do e x i s t  b u t  are time-consuming 
and r equ i r e  some p r i o r  knowledge of the source, They are thus n o t  
recommended f o r  rout ine  measurements, Development of a working 
c r i t e r i o n  f o r  tunnel  background noise  f o r  r o t o r c r a f t  t e s t i n g  is 
summarized i n  s e c t i o n  2.3. 

4. Large anechoic test chamber surrounding open test  s e c t i o n  - As dis -  
cussed earlier, the  t e r m  "open test sec t ion"  r e f e r s  t o  a wind tunnel  
t h a t  may be operated i n  a f r e e - j e t  mode. I n  t h i s  mode of operat ion,  
t he  airstream through the  surrounding test chamber c o n s i s t s  of a f r e e  
j e t  of s u f f i c i e n t  s i z e  t o  include the  test model f u l l y  i n  i ts  poten- 
t i a l  core. For r o t o r c r a f t  aeroacoust ic  t e s t i n g ,  t h i s  mode of 
opera t ion  is highly des i r ab le  and arises from s e v e r a l  r e l a t e d  
cons idera t ions .  

Since a r o t o r  i s  a geometr ical ly  l a rge  acous t i c  source,  measurements 
i n  the  geometric f a r  f i e l d ,  say  a t  a minimum d i s t ance  of 2.5 r o t o r  
diameters from the  hub, requi re  microphone pos i t i ons  a t  least  5 m from 
the  model cen te r  f o r  a 2-m r o t o r .  For a tunnel  t h a t  can operate only 
i n  a closed test sec t ion  mode, t h i s  increases  the  minimum required 
lateral t es t  sec t ion  dimension t o  10 m without any allowance f o r  an- 
echoic  w a l l  t reatment  o r  wall/microphone separa t ion .  For a tunnel  
operable i n  an open t e s t  s ec t ion  mode, a much smaller tes t  s e c t i o n  
s i z e  is required s ince  measurements can be made ou t s ide  the  flow i n  
the  test  chamber. 

Acoust ical ly  absorbent w a l l  t reatment  is  e s s e n t i a l  f o r  the  test cham- 
ber  of a wind tunnel  t o  approximate an acous t i c  f r e e  f i e l d  condi t ion.  
I f  t he  sur faces  of the  test chamber r e f l e c t  sound, then acous t i c  mea- 
surements w i l l  contain not  only d i r e c t l y  inc iden t  sound bu t  a l s o  the  
con t r ibu t ions  from mul t ip le  r e f l e c t i o n s .  These add i t iona l  contribu- 
t i o n s  can severe ly  complicate the  task  of i n t e r p r e t i n g  measured da ta .  

The performance of acous t ic  t reatment  used on w a l l  sur faces  exposed t o  
flow is genera l ly  i n f e r i o r  t o  t h a t  t y p i c a l l y  used i n  anechoic chambers 
( t h a t  is, acous t i c  wedges), where the  acous t i c  t reatment  is not  re- 
qui red  t o  withstand flow. Thus, it is only i n  a tunnel  with an open 
test  s e c t i o n  surrounded by a l a rge  anechoic chamber, where the  acous- 
t i c  t reatment  is not  exposed t o  flow, that the  measurement c a p a b i l i t y  
can approach t h a t  of a f r e e  f i e l d .  

Another advantage of an acous t i ca l ly  t r e a t e d  open test  chamber (which 
w a s  quan t i f i ed  during the  course of t h i s  s tudy)  is t h a t  lower back- 
ground noise  l e v e l s  e x i s t  a t  out-of-flow acous t i c  measurement posi-  
t i o n s .  This d i f f e rence  arises from the  absence of flow-induced micro- 
phone se l f -noise  a t  out-of-flow pos i t i ons  and the  d i r e c t i v i t y  of 
tunnel  c i r c u i t  noise  rad ia ted  i n t o  the  measurement space. (See 
s e c t i o n s  2 and 4.) 
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A survey of e x i s t i n g  U.S. wind tunnels  revealed t h a t  no adequate f a c i l i t y  t h a t  
p re sen t ly  meets the  requirements f o r  acous t i c  measurements of a l l  p e r t i n e n t  helicop- 
ter noise  sources e i t h e r  e x i s t s  o r  is being planned. Indeed, even on a worldwide 
basis, only one f a c i l i t y  e x i s t s  t h a t  apparent ly  possesses the  necessary fea tures .  
This f a c i l i t y  is the  German-Dutch (Duits-Nederlandse) Wind Tunnel (DNW) a t  
Noordoostpolder i n  the  Netherlands. (See r e f s .  10 and 11.) 

Since the  cons t ruc t ion  of a new wind tunnel  i s  not  considered f e a s i b l e ,  t he  
a l t e r n a t i v e  is t o  examine an e x i s t i n g  promising candidate  f o r  modification. This 
r a t i o n a l e  r e su l t ed  i n  the  considerat ion of the  Langley 4- by 7-Meter Tunnel. 

The Langley 4- by 7-Meter Tunnel (previously known as the  V/STOL Tunnel, and 
f requent ly  r e fe r r ed  t o  h e r e i n a f t e r  as the  "4 x 7-m Tunnel") w a s  s p e c i f i c a l l y  designed 
f o r  aerodynamic t e s t i n g  of V/STOL models and r ecen t ly  went through a major modifica- 
t i o n  f o r  flow q u a l i t y  improvement, thus s a t i s f y i n g  the  f i r s t  t w o  aforementioned 
requirements. Although acous t i c  t e s t i n g  w a s  no t  considered i n  the  design, the  provi- 
s ion  of an open tes t  sec t ion  and a l a rge  tes t  chamber surrounding the  open tes t  sec- 
t i o n  of fe red  the  p o s s i b i l i t y  of s a t i s f y i n g  the  add i t iona l  requirements. Because of 
t hese  favorable  f a c t o r s ,  t h i s  tunnel and the  Ames 40- by 80-Foot Wind Tunnel were 
suggested by N A S A ' s  Aeronautics Advisory Committee (AAC) Rotorcraf t  Subcommittee f o r  
an in-depth t reatment  f e a s i b i l i t y  study.' 
for t h i s  purpose w a s  formed a t  the  NASA Langley Research Center. 

Subsequently, an ad hoc study committee 

Throughout the  study, the  a c t i v i t y  assoc ia ted  with providing necessary back- 
ground information, and with j u s t i f y i n g  conclusions by comparison with similar f a c i l -  
i t i es  ( e s p e c i a l l y  with the  DNW), y ie lded valuable  i n s i g h t s  i n t o  the  behavior and 
design c h a r a c t e r i s t i c s  of wind tunnels  s u i t a b l e  f o r  r o t o r c r a f t  acous t i c  t e s t i n g .  
Several  of the  conclusions emerged only a f t e r  a f i n a l  review and ana lys i s  of the  
var ious s tudy components. The purpose of t h i s  r epor t  is  to descr ibe  the  process by 
which the  s tudy w a s  c a r r i e d  ou t  and to  document conclusions t h a t  p e r t a i n  not  only to  
the  4 x 7-m Tunnel bu t  a l s o  t o  acous t ic  wind tunnels  i n  general .  

A summary of the  components of the  f e a s i b i l i t y  s tudy follows i n  sec t ions  2 
and 3 .  Sect ion 4 conta ins  a f i n a l  review and in t eg ra t ed  ana lys i s  of the  var ious 
s tudy components. 

2 STUDY COMPONENTS 

In  t h i s  s ec t ion ,  the  major s tudy components are summarized as follows: ( 1 )  m i -  
crophone placement, ( 2 )  assessment of geometrical  cons t r a in t s ,  (3 )  determination of 
goals  f o r  tunnel  background noise  l eve l ,  ( 4 )  quan t i f i ca t ion  of acous t i c  sources and 
pa ths  wi th in  the  tunnel ,  and ( 5 )  establ ishment  of op t ions  f o r  background noise  reduc- 
t i o n  i n  the  tunnel  test  chamber. 

Study components ( 2 )  and (3 )  are documented i n  reference 12, and ( 4 )  and ( 5 )  are 
i n  re ferences  13 to 16. The purpose of t h i s  s ec t ion  is t o  h i g h l i g h t  the  s i g n i f i c a n t  
po r t ions  of t h i s  work. 

'Report of the  AAC ad hoc Rotorcraf t  Subcommittee meeting a t  NASA Headquarters 
J u l y  27-28, 1982. 
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2.1 Microphone Placement 

For r o t o r c r a f t  acoustic t e s t i n g  i n  wind tunnels  with an open tes t  sec t ion  such 

Seven major 
as i n  the 4 X 7-m Tunnel, proper considerat ion must be given t o  the  placement of mea- 
surement microphones i n  order  t o  achieve the  s p e c i f i c  test objec t ives .  
factors need t o  be evaluated,  and these  are i l l u s t r a t e d  i n  f i g u r e  2. As shown i n  the  
f igure,  rotor noise can be c l a s s i f i e d  i n t o  t w o  main ca tegor ies :  periodic: noise ( in-  
c luding  impulsive noise) and random noise .  This c l a s s i f i c a t i o n  is  approgr ia te  when 
sound t ransmission through the shear  l aye r  of the  f r e e  j e t  is considered, For any 
rotor acous t i c  test, measurement microphones may be placed e i t h e r  i n s i d e  the  test  
f l o w  ( t h e  uniform por t ion  of the free j e t )  o r  ou t s ide  the  test flow ( i n  the acoust i -  
c a l l y  t r e a t e d  test chamber), depending l a r g e l y  on the  purpose of t he  test and t h e  
specific type of noise  source t o  be measured. 

For in-flow microphones, the  lower bound of the  background noise  is usua l ly  
determined by the  pressure f luc tua t ions  induced by e i t h e r  the f r ee - s t r eaa  turbulence 
or t h e  boundary l aye r  developed over the  nose cone of t he  microphones. These pres-  
s u r e  f l u c t u a t i o n s  are i n  the  form of a pseudosound and are o f t e n  r e fe r r ed  t o  as the  
"microphone se l f -noise ."  An extens ive  s tudy on in-flow microphone se l f -noise  w a s  
c a r r i e d  o u t  by Noiseux ( r e f s .  17 and 18).  (See a l s o  the d iscuss ion  i n  appendix G of 
r e f .  13.)  

For out-of-flow microphones, t he  noise  rad ia ted  by the  tunnel  t es t  flow and tun- 
n e l  c i r c u i t  components determines the  l o w e r  bound of t he  background noise ,  and i n  a 
q u i e t  wind tunnel  t h i s  is  lower than the  in-flow microphone se l f -noise .  The princi-  
p a l  disadvantage with out-of-flow measurements, however, is t h a t  t ransmission of 
source noise  through the  shear  layer  of the  f r e e  j e t  r equ i r e s  cor rec t ions .  Sound 
t ransmission through a shear  layer  has been ex tens ive ly  s tud ied .  (See, f o r  ins tance ,  
r e f s .  19 and 20.) The genera l  conclusions t h a t  can be drawn from these  s t u d i e s  are 
as follows: 

1 .  Correct ion of shear  layer  transmission e f f e c t s  can be made with con- 
f idence  f o r  random noise .  

2. Correct ion can a l s o  be made t o  the per iodic  o r  impulsive noise  i f  the  
spectral bandwidth i s  1/3 octave or wider, and provided t h a t  da t a  f o r  
turbulence s c a t t e r i n g  are obtained f o r  the  tunnel  shear  l aye r  through 
c a l i b r a t i o n .  

3. I f  t he  waveform of the  per iodic  or impulsive noise  is of interest ,  and 
i f  t he  s i g n a l  conta ins  s i g n i f i c a n t  high-frequency components, then 
t ransmission of a s i g n a l  through the shear  l aye r  tends t o  d i s t o r t  the  
waveform and t h i s  d i s t o r t i o n  cannot be corrected.  

By consider ing c o l l e c t i v e l y  the seven f a c t o r s  l i s t e d  i n  f i g u r e  2, t he  fol lowing 
may be concluded: ( 1 )  f o r  measurements r e l a t e d  t o  a rotor system noise  study, i n  
which a l l  sources  (per iodic ,  impulsive, and random) need t o  be considered b u t  where a 
1/3-octave-band sound pressure  l e v e l  (SPL) is adequate, out-of-flow microphone mea- 
surements represent  the  b e s t  choice; ( 2 )  f o r  measurements i n  which accura te  determi- 
na t ion  of no ise  waveform is v i t a l  (pe r iod ic  o r  impulsive noise  only) ,  microphones 
should be placed i n s i d e  t h e  test flow i n  order  t o  avoid waveform d i s t o r t i o n  from 
turbulence s c a t t e r i n g ;  and ( 3 )  f o r  measurements i n  which both system noise  and s i g n a l  
waveform are of i n t e r e s t ,  measurements should be made with a jud ic ious  combination of 
both in-flow and out-of-flow microphones. 
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It  should be noted t h a t  rotorcraft system noise  is of concern i n  community noise  
problems and t h a t  s i g n a l  waveform is important t o  the  understanding of the  source 
mechanisms of pe r iod ic  or impulsive noise.  Both aspects are r e l evan t  t o  the  acous t i c  
t rea tment  f e a s i b i l i t y  s tudy  of the  4 x 7-m Tunnel. 

2.2 Geometrical Cons t ra in ts  

I n  an acoustic wind tunnel,  the  s i z e  and shape of the  tes t  chamber surrounding 
the  free j e t  are important t o  the  q u a l i t y  and type of acoustic measurements t h a t  can 
be made. 

Figure 3 ( a )  i l l u s t r a t e s  the  geometrical c o n s t r a i n t s  f o r  out-of-flow far f i e l d  
acous t i c  measurements of scale model rotor noise  i n  the  tes t  s e c t i o n  of the  4 X 7-m 
Tunnel. It  may be seen from f i g u r e  3 ( a )  t h a t  it is  only wi th in  l imi ted  v e r t i c a l  and 
ho r i zon ta l  arcs t h a t  out-of-flow f a r  f i e l d  acous t i c  measurements are poss ib le .  A 
s o l u t i o n  t o  circumvent t h i s  l i m i t a t i o n  p a r t i a l l y ,  however, is  t o  relocate the  tunnel  
c o n t r o l  room ou t s ide  t h e  test chamber and t o  allow r o t a t i o n  of t h e  model r o t o r  plane 
about  the  tunnel  c e n t e r l i n e  ax i s .  (Models are usua l ly  t e s t e d  with the r o t o r  a x i s  i n  
a v e r t i c a l  plane only,  as shown i n  f i g .  3 ( a ) . )  These combined measures would then 
a l low almost complete hemispherical  acous t ic  measurement coverage of the  model with 
out-of-flow microphones. R o t o r  tip/boundary c learance  is s t i l l  considered adequate,  
and f i g u r e  3 (b )  also i l l u s t r a t e s  approximate f l o o r  c learance  f o r  a 2-m r o t o r  operat- 
ing  i n  a v e r t i c a l  plane.  

2.3 Background Noise Goal 

It  w a s  pointed ou t  earlier t h a t  both in-flow afid out-of-flow microphone measure- 
ments are requi red  f o r  model rotor acous t ic  research i n  wind tunnels .  To ensure t h a t  
u s e f u l  acous t i c  da t a  are obtained from measurements, the maximum allowable tunnel  
background noise  l e v e l s  must be less than the  source l e v e l  t o  be measured f o r  both 
in-flow and out-of-flow microphones. Tunnel background noise,  which genera l ly  de- 
pends on t h e  tunnel  speed, i s  higher  a t  higher tunnel  speeds. Thus, an acous t i c  
"design tunnel  speed" must be se l ec t ed  i n  order  t o  e s t a b l i s h  the  background noise  
goa l  f o r  t he  tunnel  acous t i c  treatment.  Based on the  cons idera t ions  of having both a 
high-enough tunnel  speed f o r  adequate r o t o r c r a f t  system noise  research  and a low- 
enough tunnel  speed f o r  a low-risk and cos t -e f fec t ive  acous t i c  t reatment  implementa- 
t i o n ,  a tunnel  speed of 120 knots w a s  s e l ec t ed  f o r  t h i s  purpose. 

From a prel iminary evaluat ion of the  source type and r ad ia t ion  c h a r a c t e r i s t i c s  
of model scale he l i cop te r  rotors, it became apparent  t h a t  the  out-of-flow tunnel  
background noise  requirement would be more s t r i n g e n t  than the  in-flow requirement. 
Therefore,  the primary background noise  goal t o  be considered i n  t h i s  s tudy is that  
for out-of-flow measurement. (See f i g .  4. )  

The l o w e r  bound for in-flow background noise  can be e s t ab l i shed  based on the  m i -  
crophone se l f -no i se  pred ic ted  using the  empirical method e s t ab l i shed  i n  reference 18. 
(See also appendix G i n  r e f .  13.) The empirical method w a s  der ived from measured 
microphone se l f -noise  da t a  obtained i n  a low-noise and low-turbulence ( turbulence 
i n t e n s i t y  less than 0.3 percent )  q u i e t  small-scale wind tunnel  with c a r e f u l  consider- 
a t i o n  given t o  t h e  microphone support  t o  minimize support-generated noise .  The lower 
bound of in-flow background noise  is  used as a re ference  t o  eva lua te  the  q u a l i t y  of 
the  tunnel  acous t i c  treatment.  For successfu l  t reatment ,  the  tunnel-generated noise  
is expected t o  be l o w e r  than the  l o w e r  bound. 
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The procedure f o r  e s t a b l i s h i n g  the  out-of-flow background noise  goal ( r e f .  12)  
w a s  based on ca l cu la t ed  acous t i c  spec t r a  from s e v e r a l  important he l i cop te r  rotor 
source mechanisms a t  a d i s t ance  of 5 m below the  rotor hub along the  r6tor ax is .  
following source mechanisms w e r e  included i n  the  ca lcu la t ion :  high-speed impulsive 
noise ,  blade-vortex i n t e r a c t i o n  noise ,  r o t a t i o n a l  noise ,  and broadband noise. 

The 

A 2-m-diameter two-blade r o t o r  (NACA 0012 blade s e c t i o n )  with a blade aspec t  ra- 
t i o  of 25 w a s  used f o r  a l l  estimates a t  the  acous t i c  design tunnel  speed (1  20 knots ) .  
The two blade loadings used w e r e  192 N/m2 (4 l b / f t 2 )  and 766 N/m2 (16 l b / f t 2 ) ,  corre- 
sponding roughly to  blade t i p  speeds of 152 m/sec (500 f t / s e c )  and 259 m/sec 
(850 ft /sec),  respec t ive ly .  An i n i t i a l  assessment of the  r e l a t i v e  magnitudes from 
t h e  four  source ca tegor ies  l i s t e d  previously l ed  t o  the  conclusion t h a t  only broad- 
band noise  sources need t o  be considered i n  e s t a b l i s h i n g  the  out-of-flow noise goal. 

The broadband noise  l e v e l s  w e r e  computed using the  p red ic t ion  method proposed i n  
re ference  21, which includes turbulence inges t ion  ( T I )  noise ,  blade t ra i l ing-edge  
(TE) noise ,  and blade t i p  ( T I P )  noise .  The p red ic t ion  of T I  no ise  w a s  used as pro- 
posed, bu t  the  TE and TIP noise  compohents were ad jus ted  a f t e r  a comparison with rel- 
evant  experimental  da ta .  To accomplish t h i s  comparison, the  measured two-dimensional 
( 2 - D )  a i r f o i l  TE noise  da t a  reported i n  re ference  22 were used t o  synthes ize  the  ro- 
t o r  broadband noise  by assuming t h a t  each spanwise s e c t i o n  of the r o t o r  blade behaves 
as an equiva len t  2-D a i r f o i l  i n  the uniform local incoming flow. The con t r ibu t ions  
from blade sec t ions  w e r e  ex t rapola ted  using ava i l ab le  da t a  ( r e f .  22)  and w e r e  added 
appropr ia te ly  to  give the  broadband noise  f o r  the  e n t i r e  r o t o r .  The comparison 
ind ica t ed  t h a t  the  synthesized rotor broadband noise  w a s  nominally 10 dB higher  than 
the  p red ic t ion  ( r e f .  1 2 ) .  Thus, a 10-dB upward adjustment w a s  appl ied t o  the  pre- 
d i c t i o n  f o r  TE noise.  A similar adjustment w a s  also made t o  TIP  noise  on account of 
the  s i m i l a r i t y  of t he  physical  mechanisms of the  two types of noise ,  as pos tu la ted  
i n  re ference  21. It i s  important t o  note t h a t  the  crude comparison made i n  t h i s  
s tudy by no means represents  a va l ida t ion  of the  p red ic t ion  method proposed i n  r e f e r -  
ence 21. This was considered the  b e s t  approach possible a t  t h i s  t i m e  i n  the  absence 
of any d e f i n i t i v e  da t a  on rotor broadband noise  from a wel l -control led experiment. 
(The lack of r o t o r  broadband noise  da t a  is due l a r g e l y  t o  the  lack of a s u i t a b l e  test 
f a c i l i t y .  

The ad jus ted  TE, TIP, and T I  l e v e l s  w e r e  then added logar i thmica l ly  t o  produce a 
t o t a l  r o t o r  broadband noise  f o r  the  two assumed blade loading l eve l s .  To account f o r  
t h e  decrease i n  broadband off-axis  r ad ia t ion  a t  30° from the  r o t o r  axis, 6 dB w e r e  
subt rac ted  (assuming d ipole  d i r e c t i v i t y )  from these  t o t a l s .  An out-of-flow back- 
ground noise  goal  w a s  obtained by taking the  a r i t hme t i c  average of the  broadband 
noise  l e v e l s  f o r  the  t w o  blade loadings.  

Figure 4 gives  a comparison of the  out-of-flow design-goal noise  l e v e l  and the  
l o w e r  bound on in-flow background noise  with the  e x i s t i n g  in-flow and out-of-flow 
background noise  l e v e l s  a t  the  acous t i c  design tunnel  speed. It  is  seen that  the  
minimum tunnel  background noise  reduct ion required ranges from 37 dB a t  100 Hz t o  
5 dB a t  8 kHz f o r  out-of-flow measurement. The in-flow background noise  is about 
15 t o  20 dB higher  than the  l o w e r  bound for microphone se l f -noise .  

2.4 Quant i f ica t ion  of Acoustic Sources and Paths 

I n  order  t o  determine methods f o r  achieving the  required tunnel  background no i se  
reduct ion,  d e t a i l e d  q u a n t i t a t i v e  information regarding acous t i c  sources  and noise  
propagation paths  w a s  required.  
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Source/path da t a  w e r e  provided through an ex tens ive  measurement and ana lys i s  
s tudy performed i n  reference 13. The objec t ive  of t h i s  s tudy w a s  t o  diagnose the  
con t r ibu t ing  sources  t o  the  background noise  i n  the  test s e c t i o n / t e s t  chamber and the  
paths by which the  background noise  reaches the  test s e c t i o n / t e s t  chamber. Pr inc ipa l  
r e s u l t s  of t h i s  s tudy are summarized i n  the  following discussion.  

Descr ipt ion 

Retain the  cu r ren t  fan and tunnel  c i r c u i t ,  bu t  reduce t es t  
s e c t i o n  s i z e  with a smaller nozzle. 

Retain the  cu r ren t  fan,  bu t  add extensive acous t i c  t reatment  
t o  the  tunnel  c i r c u i t .  

Rebuild only the  fan  t o  reduce blade loading and improve 
, e f f i c i ency .  

The major background noise  sources determined from the  measurements described 
i n  reference 13 are depicted schematical ly  i n  f i g u r e  5. Estimated 1/3-octave-band 
acous t i c  power l e v e l s  f o r  the  t w o  dominant sources,  namely, the  tunnel  d r ive  f an  
and first- and second-corner turning vanes, f o r  t h ree  tunnel  speeds (40, 80, and 
160 knots)  are shown i n  f igu re  6 .  Acoustic a t t enua t ion  due t o  propagation from vari-  
ous source loca t ions  t o  the  test sec t ion  is  shown i n  figvlre 7. Steps to  a t t enua te  
t h e  machinery noise  noted i n  f i g u r e  6 have a l ready  taken place s ince  the  t i m e  that  
these measurements w e r e  made by r e loca t ing  an o i l  pump outs ide  the  tunnel c i r c u i t .  

I , Rebuild t h e  fan  and add necessary t reatment  t o  the c i r c u i t .  

The t o t a l  measured background noise spectrum i n  the  test sec t ion  together  with 
an es t imat ion  of i ts  cons t i t uen t  parts are presented i n  f i g u r e  8. It  may be seen 
from these r e s u l t s  t h a t  the  f an  noise  propagation v i a  the  upstream path is dominant, 
with near ly  equal  cont r ibu t ions  a t  low frequencies  from fan  noise  propagating v i a  the  
downstream path. Turning vane noise  is seen t o  be less important; however, t he  au- 
t ho r s  of reference 13 note t h a t  the  turning vane noise  ca l cu la t ion  may be sub jec t  t o  
error - poss ib ly  10 dB - because of a lack of necessary d e t a i l e d  information regard- 
ing  the  flow f i e l d  inc iden t  upon the  vane set. 

2.5 Options f o r  Reduction of T e s t  Chamber Noise 

In  a subsequent s tudy ( r e f .  141, opt ions f o r  reducing the  tes t  chamber back- 
ground noise  l e v e l  t o  meet the  NASA goal were def ined and evaluated. This ana lys i s  
w a s  based on a d e t a i l e d  examination of the measured r e s u l t s ,  the  maximum acceptable  
tunnel  background noise  c r i t e r i o n  previously es tab l i shed ,  and good p rac t i ce  i n  wind- 
tunnel  no ise  con t ro l .  The following four  noise-reduction opt ions w e r e  i d e n t i f i e d  i n  
re ference  14  to  achieve the  acous t ic  ob jec t ives  f o r  t he  upgrade of the  Langley 4- by 
7-Meter Tunnel: 

Option 

I 

I1 

I11 

I V  

The impact of these  opt ions given i n  reference 14 is summarized i n  t a b l e  I. 

Although the author of reference 14  conducted a t echn ica l  eva lua t ion  and rela- 
t i v e  cos t /bene€i t  ana lys i s  ( t a b l e  I) of the  four  noise  reduct ion opt ions  previously 
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summarized, t w o  a d d i t i o n a l  criteria to  those used by him are required i n  eva lua t ing  
the  r e l a t i v e  merits of the  ava i l ab le  options: ( a )  an acceptab le  level o€ confidence 
i n  achieving the  necessary noise  reduct ion,  and (b)  no degradat ion i n  adrodynamic 
performance of the  tunnel .  

From t h i s  perspect ive,  opt ion I V  was i d e n t i f i e d  as the  only one cdpable of meet- 
ing  both the  background noise  goal  and the  a d d i t i o n a l  criteria. Some of the  reason- 
i n g  leading to  t h i s  conclusion i s  given as follows: 

Option I w a s  considered a t t r a c t i v e  i n i t i a l l y ,  e s p e c i a l l y  from a cQst viewpoint. 
Addit ional  ana lys i s ,  however, revealed t h a t  the  reduct ion i n  nozzle s i z e  would no t  
only compromise the  model s i z e  requirement bu t  a l s o  p re sen t  s e r ious  corfcern on the  
performance of t he  f i rs t  d i f f u s e r .  The performance of the  p re sen t  nozzle and f i r s t  
d i f f u s e r  w a s  evaluated i n  re ference  23. 

Option I1 relies heavi ly  on the  use of acous t i c  absorbing devices  placed around 
t h e  tunnel  c i r c u i t .  It represents  a pass ive  approach t o  the  no i se  reduct ion problem. 
It is l i k e l y  t h a t  the  a d d i t i o n a l  aerodynamic lo s ses  assoc ia ted  with these  acous t ic  
absorbing devices ,  p a r t i c u l a r l y  those placed i n  the  high-veloci ty  region of the  tun- 
n e l ,  and the  se l f -noise  generat ion from these  devices  themselves w i l l  o f f s e t  s o m e  of 
t he  o v e r a l l  noise  reduct ion.  

Option I11 represents  a d i r e c t  approach t o  noise  reduct ion - t h a t  is, reduction 
of no i se  a t  the  source.  It is the  most d e s i r a b l e  approach s ince  methods f o r  fan 
n o i s e  reduction a t  the  source a r e  r e l a t i v e l y  w e l l  e s t ab l i shed  ( r e f .  24) .  Techniques 
such as t i p  speed reduct ion,  blade loading opt imizat ion,  and optimized matching of 
t he  fan design t o  the  tunnel in-flow are known t o  provide r e l i a b l e  fan noise  reduc- 
t i o n .  However, based on the  estimates provided i n  reference 14  and considerat ion of 
t h e  c u r r e n t  fan design p rac t i ce ,  it w a s  concluded, however, t ha t  the  required no i se  
reduct ion cannot be achieved by rebui ld ing  the  e x i s t i n g  fan alone. 

Thus, a f t e r  c a r e f u l  eva lua t ion  of a l l  t he  ava i l ab le  opt ions,  opt ion I V  shown i n  
f i g u r e  9 w a s  s e l e c t e d  as the  only one t h a t  involves  an acceptable  l e v e l  of r i s k  and 
has  minimum det r imenta l  impact on the  aerodynamic performance of t he  tunnel.  ( I n  
f a c t ,  the  p o s s i b i l i t y  e x i s t s  t h a t  fan  redesign may provide an improvement i n  t h e  
aerodynamic perforraance of the tunnel . )  The e s s e n t i a l  f e a t u r e s  of the  chosen 
opt ion I V  were as follows: 

1 .  A 50-percent speed reduct ion of the  tunnel  d r i v e  f an  (93 rpm a t  acous- 
t i c  design tunnel  speed) 

2. Fan reblading t o  maximize the  aerodynamic e f f i c i e n c y  of t he  fan  and t o  
provide an improved matching between the  fan  and tunnel  c i r c u i t  f low 

3 .  A minimum amount of acous t i c  t reatment  i n s i d e  the  tunnel  c i r c u i t  t o  
ensure l o w  losses and se l f -noise  generat ion due t o  t rea tment  

4. Relocat ion of the  present  con t ro l  room ou t s ide  the  test  chamber 

5. Acoustic t reatment  of a l l  t es t  chamber sur faces  t o  ensure a high- 
q u a l i t y  acous t i c  measurement environment. 
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3 ENGINEERING FEASIBILITY STUDY 

After  determining a des i r ab le  opt ion f o r  acoustic t reatment  of the  4 x 7-m Tun- 
ne l ,  a s tudy w a s  conducted to assess the engineer ing f e a s i b i l i t y  of s a t i s f a c t o r i l y  
implementing this  option. 

One of the  cr i t ical  ques t ions  t o  be resolved i n  the  engineering f e a s i b i l i t y  
s tudy w a s  the  fan  redesign t o  achieve a 50-percent speed reduct ion while maintaining 
the  p re sen t  tunnel  flow c a p a b i l i t y  a t  improved aerodynamic e f f i c i ency .  

The engineering f e a s i b i l i t y  s tudy is summarized i n  reference 16. A t  the  conclu- 
s i o n  of this study, it w a s  apparent t h a t  the  required 50-percent fan  speed reduct ion 
is incompatible with conventional practice i n  wind-tunnel d r ive  fan  design. Without 
compromising any of the  tunnel  performance c o n s t r a i n t s ,  t he  achievable  f an  speed 
reduct ion is conserva t ive ly  est imated t o  be 27 percent  (135 r p m  a t  acous t i c  tunnel  
design speed).  This 27-percent fan  speed reduct ion implies t h a t  t he  required back- 
ground noise reduct ion due t o  f an  speed would f a l l  s h o r t  of the  design goal  by 8 dB. 

The main f ea tu res  of the  redesigned fan  included ( 1 )  a blade p r o f i l e  cons i s t ing  
of a wide-chord NACA 65-ser ies  a i r f o i l  with c i r cu la r - a rc  camber, a hub s o l i d i t y  of 2, 
and a tip-to-hub chord r a t i o  of 0.75; (2) an increase  i n  the  blade number from 9 t o  
19; ( 3 )  an inc rease  i n  the  hub diameter from 4.9 to  7 m with a new nose cone; ( 4 )  an 
add i t ion  of f i v e  i n l e t  guide vanes t o  provide a 30° prewhirl;  and ( 5 )  an increase  i n  
the  t a i l  cone length.  

The f ind ings  presented i n  reference 16 showed the  need f o r  a reeva lua t ion  of the  
elements of t he  s e l e c t e d  t reatment  opt ion and an e f f o r t  t o  c o n t r a s t  the  p re sen t  
acous t i c  t reatment  approach of the  4 x 7-m Tunnel with the  design f e a t u r e s  of the  
DNW. This i n t eg ra t ed  ana lys i s  is presented i n  the  Zollowing sec t ion .  

4 REVIEW AND INTEGRATED ANALYSIS OF STUDY COMPONENTS 

A t  the  conclusion of the  engineering f e a s i b i l i t y  s tudy,  a renewed e f f o r t  w a s  
i n i t i a t e d  t o  review c r i t i c a l l y  the  various elements i n  the  se l ec t ed  opt ion so that 
the  t reatment  f e a s i b i l i t y  i s s u e  could he addressed. The var ious a c t i v i t i e s  conducted 
are summarized i n  t h i s  s ec t ion .  

4.1 Comparison of Background N o i s e  Between 4 x 7-m and DNW Tunnels 

The DNW tunnel  w a s  designed and constructed with aeroacous t ic  t e s t i n g  i n  mind 
and, as such, it is genera l ly  considered the  b e s t  large-scale aeroacous t ic  t e s t i n g  
f a c i l i t y  worldwide, A comparison of measured tunnel  background noise  l e v e l s  f o r  t h e  
4 x 7-m Tunnel w i t h  those of the DNW should therefore  be i n s t r u c t i v e  i n  a s ses s ing  the  
acous t i c  t reatment  required f o r  t he  4 X 7-m Tunnel. Figure 10 shows such a compari- 
son. (Throughout t h i s  r e p o r t  DNW measurements a t  65 m/sec have been used f o r  compar- 
i sons  with the  4 x 7-m Tunnel a t  120 knots.)  

I t  is seen t h a t  t he  d i f f e rence  i n  the  background l e v e l s  between in-flow and out- 
of-flow noise  for  the  4 x 7-m Tunnel is about 5 dB over the  e n t i r e  s p e c t r a l  range. 
The corresponding d i f f e rence  f o r  the  DNW is  i n  the  range from 20 t o  25 dB f o r  the  
e n t i r e  spectral range and is s u b s t a n t i a l l y  higher  than t h a t  observed f o r  t he  4 x 7-m 
Tunnel. One of the  major d i f f e rences  between the  two tunnels  is the  t es t  chamber 
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acous t i c  environment; t h a t  is, the  tes t  chamber of t he  DNW is anechoic abd the test  
chamber f o r  the  4 X 7-m Tunnel is semireverberant. 

It is a l s o  p e r t i n e n t  t o  note  t h a t  t he  in-flow background noise  levels of the  two 
tunnels  are genera l ly  comparable. This con t r a s t s  dramat ica l ly  w i t h  the  la rge  d i f f e r -  
ence between t h e i r  out-of-flow leve ls .  Furthermore, t he  out-of-flow background noise  
level measured f o r  t he  4 X 7-m Tunnel is i n s e n s i t i v e  t o  the  microphone loca t ion  
( r e f .  13) ;  whereas f o r  the  DNW, the  background noise  l e v e l  reduces as the out-of-flow 
d i s t ance  to the  tunnel c e n t e r l i n e  is increased ( r e f .  IO). These observkd d i f f e rences  
motivated a s tudy ( r e f .  15) t o  inves t iga t e  the major cont r ibu t ing  f a c t o r  t o  the  l a rge  
noise  reduction i n  out-of-flow background noise  l e v e l  t h a t  ex i s t ed  i n  the  DNW. The 
f ind ings  of t h i s  study are summarized i n  t he  next sec t ion .  

It is a l s o  p e r t i n e n t  t o  note  t h a t  i n  making the  comparison shown i n  f igu re  IO, 
no considerat ion w a s  given t o  the  sca l ing  aspec ts  of the  two tunnels.  For instance,  
the  nozzle s i z e  f o r  t he  DNW is  6 m by 8 m, which is about 1.7 t i m e s  l a r g e r  than t h a t  
of the 4 x 7-m Tunnel, and the  test chamber volume is much g r e a t e r  f o r  t he  DNW. 

4.2 E f fec t  of T e s t  Chamber Acoustic T r e a t m e n t  on Out-of-Flow Noise 

I n  reference 13 the  reduction of out-of-flow background noise  due t o  acous t ic  
t reatment  of the  tes t  chamber w a s  o r i g i n a l l y  estimated t o  be between 5 and 10 dB. 
This estimate w a s  based on the  measured d i r e c t i v i t y  of tunnel  noise  r ad ia t ing  i n t o  
the  open tes t  sec t ion  from the  f i r s t  d i f f u s e r  and the  reduction of test chamber 
reverberat ion.  To s u b s t a n t i a t e  t h i s  estimate as w e l l  as t o  understand the  d i f fe rence  
between in-flow and out-of-flow background noise l e v e l s  observed f o r  t he  DNW (see 
f i g .  IO), a computational study w a s  performed and is  reported i n  reference 15. This 
s tudy involved a 2-D modeling of the  nozzle, the tes t  chamber, and the  f i r s t  d i f f u s e r  
of t he  tunnel  c i r c u i t  t o  assess the e f f e c t  of acous t i ca l ly  absorbent treatment of 
t es t  chamber sur faces  on the  sound f i e l d  i n  the  test chamber. The geometry of t he  
po r t ion  of the  tunnel  c i r c u i t  modeled i n  the ana lys i s  is  shown i n  f igu re  11. 

Typical r e s u l t s  a t  low frequencies are shown i n  f igu re  12 .  It  is seen t h a t  t h e  
test  chamber t reatment  r e su l t ed  i n  noise  l e v e l s  a t  t y p i c a l  out-of-flow microphone 
loca t ions  (near  the  chamber wa l l )  some 20 t o  25 dB lower than the  in-flow noise  
l eve l .  Additional computation with tunnel  flow included showed a similar trend. 
(See r e f .  15.) 

It  thus appears t h a t  the  o r i g i n a l  estimate ( r e f .  13) on the  out-of-flow noise  
reduct ion due t o  acous t i c  treatment of t he  test  chamber w a s  too conservative.  To 
v e r i f y  f u r t h e r  t he  computed r e s u l t s  of reference 15, t h e  computed r e s u l t s  w e r e  com- 
pared with the  d i f f e rence  i n  background noise l e v e l s  measured i n  the  DNW. The d i f -  
ference between the  DNW in-flow and out-of-flow background noise  l e v e l s  as shown i n  
f i g u r e  10 is  p l o t t e d  i n  f i g u r e  13. A noise  reduction from 18 t o  32 dB is evident  
over t he  e n t i r e  frequency range of i n t e r e s t .  This noise  reduct ion is believed t o  be 
due t o  the  acous t i c  t reatment  of the  test  chamber. 2 

I f  it is  conservat ively assumed from the DNW da ta  t h a t  a nominal reduct ion of 
20 dB is due t o  test chamber treatment alone, the  magnitude of the  noise  reduct ion 

'This view is shared by the  DNW personnel (J. C. A. van Ditshuizen) through 
p r i v a t e  communication. 
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observed i n  the  DNW can be ex t rapola ted  t o  the  4 x 7-m Tunnel s i t u a t i o n  once a d i s -  
tance s c a l i n g  l a w  is es tab l i shed .  Using the  out-of-flow noise  d i r e c t i v i t y  da t a  
measured by the  DNW (ref.  I O )  a t  s i d e l i n e  d i s t ances  of 8.6 and 12.2 m, it w a s  estab- 
l i shed  t h a t  the  d i s t ance  s c a l i n g  follows an approximate inve r se  square l a w  i n  terms 
of r/D*,  where r is the  s i d e l i n e  d i s t ance  and D* i s  the equiva len t  nozzle 
diameter. (See f i g .  14.)  

For the  4 x 7-m Tunnel, as i n  sec t ion  2, t h i s  s tudy assumed a 2-m-diameter model 
r o t o r  with the  out-of-flow noise  measurements being made a t  2.5 rotor diameters ( 5  m )  
away from the  model cen te r l ine .  This gives  an r/D* of 0.94 r e s u l t i n g  i n  a reduc- 
t i o n  of 13 dB f o r  out-of-flow background noise  i f  one assumes t h a t  t he  t rend observed 
f o r  out-of-flow background noise  reduct ion i n  the  DNW is  appl icable  t o  the  4 x 7-m 
Tunnel. The corresponding r e s u l t s  obtained from an ana lys i s  made a t  low frequency 
a r e  a l s o  p l o t t e d  i n  the  same f igu re  f o r  comparison. It is seen t h a t  t he  predicted 
values genera l ly  exceed the  conservat ive representa t ion  of the  DNW da ta .  

4.3 Noise Reduction Due t o  Fan Redesign 

The noise  reduct ion due t o  achievable  fan  speed reduct ion (27 percent)  a lone can 
be r e a d i l y  es t imated using the  noise  s c a l i n g  l a w  as e s t ab l i shed  i n  re ference  13. The 
spectrum of the  tunnel  background noise  with a r e b u i l t  d r i v e  fan operat ing with a 
27-percent speed reduct ion w i l l  be 5 dB lower than the  p re sen t  background noise  wi th  
t h e  e n t i r e  spectrum s h i f t e d  t o  the  l o w e r  end by 1/3 octave.  An add i t iona l  8-dB noise  
reduct ion,  as est imated i n  reference 13, due t o  improved f an  aerodynamic flow is  also 
appl ied.  
noise  ca l cu la t ed  i n  t h i s  manner is  shown i n  f i g u r e  15. It is  seen t h a t  the  out-of- 

The o v e r a l l  e f f e c t  of a r e b u i l t  fan on the  out-of-flow tunnel  background 

flow noise  goal  i s  m e t  f o r  f requencies  g r e a t e r  than 1 
required below 1 kHz is s t i l l  s u b s t a n t i a l .  Figure 16 
f an  on in-flow background noise.  It i s  seen t h a t  t he  
approaches the  lower bound f o r  microphone se l f -noise .  
surement i s  of i n t e r e s t ,  based on the  d iscuss ion  made 
ing  the  source type s u i t a b l e  f o r  in-flow measurement, 
reduce f u r t h e r  t he  in-flow background noise .  

Addit ional  e f f o r t  w a s  expended i n  the  attempt t o  

kHz. The add i t iona l  reduct ion 
shows the  e f f e c t  of a r e b u i l t  
in-flow background noise  l e v e l  

In  f a c t ,  i f  only iil-flow mea- 
i n  r e l a t i o n  t o  f i g u r e  2 regard- 
t he re  would be no need t o  

estimate independently the 
noise  reduct ion due t o  fan  aerodynamic flow improvement. Referr ing t o  f i g u r e  10, it 
w a s  pointed out  i n  the  d iscuss ion  t h a t  t he  in-flow noise  l e v e l  i n  the  DNW is only 
marginally l o w e r  than t h a t  i n  the  4 x 7-m Tunnel a t  corresponding tunnel  speeds. 
This observat ion w a s  s u r p r i s i n g  s ince  it has been reported ( r e f .  1 1 )  t h a t  g r e a t  care 
w a s  taken i n  the  acous t i c  design of the  DNW fan. 

Further  s tudy  on t h i s  aspect, however, has revealed t h a t  a d i r e c t  comparison, as 
w a s  presented i n  f i g u r e  I O ,  can be misleading. This is because noise  r ad ia t ion  from 
wind-tunnel f ans  depends on many design and opera t ing  parameters such as f an  t i p  
speed, mechanical power de l ivered ,  aerodynamic e f f i c i ency ,  and blade loading d i s t r i -  
bution. A l s o ,  t he  incoming flow t o  the  fan  is  important.  The state of incoming f l o w  
i n  tu rn  depends on the  aerodynamic performance of the tunnel  c i r c u i t  as a whole. In  
comparing noise  r a d i a t i o n  from wind-tunnel fans  of d i f f e r e n t  designs,  cons idera t ion  
must be given t o  a l l  the  parameters previously s t a t ed .  The DNW f an  has a higher  
aerodynamic e f f i c i e n c y  than t h a t  estimated f o r  the  p re sen t  4 X 7-m Tunnel fan.  The 
mechanical power de l ivered  t o  the  open test s e c t i o n  by the DNW fan  is about t w i c e  
t h a t  of t he  4 X 7-m Tunnel. The design t i p  speed of the  DNW fan,  however, is only  
80 percent  of t h a t  for  the  4 X 7-m Tunnel. The DNW fan  and tunnel  c i r c u i t  are s i m i -  
l a r  i n  s i z e  ta those of the  4 X 7-m Tunnel ( fan  diameters are 12.5 m and 12.3 m for  
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t h e  DNW and t h e  4 x 7-m Tunnel, r e spec t ive ly ) ,  bu t  t he  test sec t ion  s i ze  of the  DNW 
is 1.7 times l a rge r .  (The DNW tes t  se8tion i s  6 m by 8 m.) 

Using the  f a c t  that c i r c u i t  s i z e s  and layouts  of t he  two tunnels  are roughly 
similar, an at tempt  w a s  made t o  evaluate  (from known aerodynamic and acous t ic  da t a  of 
t h e  two tunnels )  t he  noise  level t h a t  a f an  similar t o  t h e  DNW design would produce 
if it w e r e  i n s t a l l e d  i n  the  4 x 7-m Tunnel. The a i m  of t h i s  exercise w a s  t o  v e r i f y  
independently the  8-dB noise  b e n e f i t  estimated i n  reference 13 due t o  the  redesign of 
t he  4 X 7-m Tunnel fan.  The approach taken was t o  s i z e  the  DNW fan t o  meet t h e  
4 X 7-m Tunnel flow requirement a t  the  performance po in t  s e l ec t ed  f o r  t h e  acous t ic  
design condi t ion (120 knots )  and then t o  ca l cu la t e  the  noise  r ad ia t ion  of t h i s  fan 
based on published noise  da t a  of the DNW fan. This attempt was  unsuccessful because 
of t he  l a rge  number of va r i ab le s  involvkd i n  t h i s  ca l cu la t ion  and the  u n a v a i l a b i l i t y  
of both noise  and performance da ta  of the  DNW fan  a t  off-design condi t ions.  

It is p e r t i n e n t  t o  po in t  o u t  t h a t  f o r  large-scale  i n d u s t r i a l  fans  used i n  cool- 
i ng  towers and a i r - f i n  coolers ,  reference 24 notes t h a t  a noise  reduct ion of 15 dB o r  
more has been achieved f o r  the  same a i r f low with more e f f i c i e n t  wide-blade low-speed 
f ans  than the previous narrow-blade high t i p  speed fans.  The same app’roach w a s  used 
i n  the  engineering f e a s i b i l i t y  s tudy f o r  a new fan  design described i n  reference 1 6  
and i n  sec t ion  3 of t h i s  repor t .  

However, because an independent v e r i f i c a t i o n  on the  ca l cu la t ion  i n  reference 13 
w a s  no t  poss ib le ,  and because of the  importance of t he  estimate, it i s  recommended 
t h a t  the  estimated 8-dB noise  reduct ion due t o  improved fan aerodynamic flow should 
be v e r i f i e d  by model scale t e s t ing .  

4.4 Reassessment of Acoustic Treatment Required To Achieve Out-of-Flow N o i s e  Goal 

With the reevaluat ion of noise  reduction achievable with a r e b u i l t  fan  
(27-percent speed reduct ion)  and the  understanding gained on the  e f f e c t  of an an- 
echoic tes t  chamber on out-of-flow background noise ,  a reassessment of t he  t reatment  
approach t o  achieve the  tunnel  background noise  goal w a s  made, Figure 17 shows t h e  
an t i c ipa t ed  out-of-flow noise  reduction due t o  acous t ic  t reatment  of t he  test  chamber 
f o r  t he  r e b u i l t  fan. The add i t iona l  noise  reduction i l l u s t r a t e d  w a s  obtained from 
the  estimate made i n  f igu re  13 and w a s  applied uniformly over the  e n t i r e  spectrum. 
It is seen t h a t  the  out-of-flow noise goal  i s  s a t i s f i e d  f o r  frequencies above 500 Hz.  
The remaining reduct ion required a t  low frequencies f o r  meeting the  goal  is  reduced 
t o  about 10 dB, as shown by comparing f igu re  77 with f i g u r e  15. For in-flow back- 
ground noise,  it is assumed conservat ively t h a t  t he  acous t ic  treatment of the  t es t  
chamber cont r ibu tes  no reduction. 

The remaining noise  reduct ion required t o  s a t i s f y  the  out-of-flow background 
noise  goal is obtained by t r e a t i n g  cri t ical  p a r t s  of t he  tunnel  c i r c u i t .  The treat- 
ment approach i n i t i a l l y  proposed i n  reference 13 (see f i g .  9 )  was c a r e f u l l y  analyzed 
together  with add i t iona l  considerat ions given t o  the  c o s t  e f fec t iveness  and elimina- 
t i o n  of poss ib le  r e f l e c t i o n s  of a x i a l l y  propagating test  model noise  from the  f i r s t -  
and fourth-corner tu rn ing  vanes (which are along the  l i n e  of s i g h t  of t he  model). 
The ana lys i s  ind ica ted  t h a t  t he  f i r s t -  and fourth-corner tu rn ing  vanes should be 
acous t i ca l ly  t r ea t ed .  

To estimate the  e f f e c t  of acous t ic  treatment f o r  corner turning vanes on out-of- 
flow tunnel background noise ,  t he  predicted out-of-flow no i se  with the  r e b u i l t  fan 
(see f i g s .  15 and 16) w a s  separated i n t o  upstream and downstream cont r ibu t ions  from 
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t h e  fan us ing  the  propagation a t tenuat ion  da ta  shown i n  f i g u r e  7. The cont r ibu t ion  
t o  the  test sec t ion  no i se  due t o  turning vanes w a s  omitted i n  the  ca l cu la t ion  s i n c e  
t h e  turn ing  vane no i se  is  estimated t o  be a t  least 10 dB lower than the  fan noise .  
(See f ig .  8.) Figure 18 shows the  a t tenuat ion  achievable  with acous t i c  t reatment  f o r  
t h e  f i r s t - co rne r  tu rn ing  vane on t h e  upstream con t r ibu t ion  t o  the  out-of-f low back- 
ground noise.  A corresponding r e s u l t  with t reatment  f o r  the  f ourth-corner tu rn ing  
vane is given i n  f i g u r e  19. The in se r t ion  loss f o r  t he  a c o u s t i c a l l y  t r e a t e d  corner  
vanes w a s  es t imated based on the  da t a  ava i l ab le  i n  re ferences  13 and 16. The com- 
bined effect  of acous t i c  t reatment  f o r  the  first- and fourth-corner tu rn ing  vanes is 
obtained by loga r i thmica l ly  adding the  upstream and downstream cont r ibu t ions .  The 
r e s u l t  is shown i n  f i g u r e  20. I t  is seen t h a t  t he  out-of-flow background no i se  goal 
is  s a t i s f i e d  a t  a l l  b u t  the  lowest frequency (100 Hz). Further  assessment of t h i s  
discrepancy revealed t h a t  it w i l l  n o t  compromise the  o r i g i n a l  ob jec t ive  f o r  rotor- 
c ra f t  acous t i c  t e s t i n g ,  because the  weaker source mechanism of i n t e r e s t  a t  t h i s  
frequency is atmospheric t u rbu len t  inges t ion  no i se  t h a t  may n o t  be r e a l i s t i c a l l y  
simulated i n  a wind tunnel.  

The corresponding r e s u l t  f o r  the  in-flow background noise  wi th  acous t i c  treat- 
ment f o r  the  f i r s t -  and fourth-corner turning vanes is  shown i n  f i g u r e  21. It is 
seen t h a t  t he  in-flow background noise  achievable  is  a c t u a l l y  lower than the  lower 
bound f o r  microphone se l f -noise .  

4.5 Acoustic Treatment of T e s t  Chamber Floor 

The i n i t i a l  approach zxamined i n  the  engineering f e a s i b i l i t y  s tudy ( r e f .  16) f o r  
acous t i c  t reatment  of the  tes t  chamber f l o o r  cons is ted  of a po r t ab le  2 - f t - f l a t  acous- 
t i c  t reatment  placed on the  e x i s t i n g  f l o o r  during an acous t i c  test .  This t reatment  
decreases  the  model-to-floor c learance,  which i s  of concern from the  po in t  of view of 
acous t i c  t e s t i n g  s ince  f u l l  d i r e c t i v i t y  measurements r equ i r e  model r o t a t i o n ,  and 
adequate model-to-tunnel f l o o r  c learance is important from both aerodynamic and 
acous t i c  cons idera t ions .  

Addit ional ly ,  turbulence along the  f l o o r  of t he  f i r s t  d i f f u s e r  from the  t e r m i -  
na t ion  of the  acous t i c  f l o o r  t reatment  may be expected t o  reduce the  q u a l i t y  of t he  
flow throughout the  tunnel .  

An a l t e r n a t i v e  method of acous t ic  t reatment  t h a t  would avoid these  problems 
would be t o  recess the  t reatment  below the  e x i s t i n g  tunnel  f l oo r .  

CONCLUDING REMARKS 

This r epor t ,  which has summarized the  acous t i c  t reatment  f e a s i b i l i t y  study f o r  
t h e  Langley 4- by 7-Meter Tunnel, has determined t h a t  modification of the  tunnel f o r  
r o t o r c r a f t  no ise  research is  f e a s i b l e .  The NASA design noise  goal summarized i n  t h i s  
report can be achieved by introducing the  following modif icat ions:  

0 A r e b u i l t  fan operat ing a t  135 rpm or  below 

0 Acoustic t reatment  of the  test chamber 

0 Treat ing the  f i r s t - c o r n e r  turning vane set 

0 Trea t ing  the  fourth-comer turning vane se t  
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I t  i s  recommended, however, t h a t  model tests be conducted to ver i fy  the aero- 
dynamic performance and noise reduction benefi t  because of fan reblading and aero- 
dynamic eff ic iency improvements. Also, concepts fo r  tunnel floor acoustic treatment 
should be fur ther  evaluated. 

In  addition t o  providing a sound basis fo r  the aforementioned conclusions, the 

When taken i n  aggregate w i t h  the cited references, it is a l so  considered that 
study described i n  t h i s  repor t  sheds new l i g h t  on the design of an acoustic wind tun- 
nel. 
t h i s  report  demonstrates a procedure t h a t  could be applied t o  other f e a s i b i l i t y  
s tud ies  fo r  wind-tunnel acoustic treatment. 

NASA Langley Research Center 
Hampton, VA 23665-5225 
A p r i l  29, 1986 
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current control roon: 
and  tunnel floor 

(a)  Model pos i t i on  f o r  normal operat ion showing blockage 
o f  measurement loca t ion  by cu r ren t  con t ro l  room and 
tunnel  f l o o r .  

I I J 

ceil ins 

I I 

( b )  Typical model pos i t i on  f o r  sideway opera t ion  
with c o n t r o l  room re loca ted  outs ide  test  
chamber showing increase  i n  measurement range. 

Figure 3.- Schematic drawing showing open test  s e c t i o n  and 
test chamber. 
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Figure 4.- Comparison of measured background noise  l e v e l s  of the  4 x 7-m Tunnel 
with NASA design noise goal.  Tunnel speed, 120 knots.  
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Figure 6.- Estimated sound power l e v e l  of fan and turn ing  
vanes. Figure taken f r o m  re ference  13. 
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Figure 7,- Estimated reduct ion i n  sound pressure  l e v e l  between 
var ious source loca t ions  and test sec t ion .  Figure taken 
from reference  13. 
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Figure 8.- Estimated source/path cons t i t uen t s  of measured 
in-flow background noise  l e v e l  a t  80-knot tes t  s e c t i o n  
speed. Figure taken from reference 13. Same r e l a t i v e  
l e v e l s  expected a t  120 knots. 
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Figure 10.- Comparison of measured background noise  l eve l s  between 
the  4 x 7-m Tunnel and the  DNW. Tunnel speed, 120 knots.  

Figure 11  .- Schematic drawing of the  4 x 7-m Tunnel 
showing por t ion  of tunnel  c i r c u i t  modeled i n  
acous t i c  ana lys i s .  
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Theoretical radiation patterns for 100-Hz source propagating into 
4 x 7-m tes t  section (reference point ,  0 dB) 
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Figure 12.- Computed sound f i e l d  throughout tunnel  test sec t ion  showing e f f e c t  

of anechoic t reatment  of test chamber. 
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Figure 13.- Difference between in-flow and out-of-flow background noise l e v e l s  of 
the DNW showing effect of test chamber acoustic  treatment. Tunnel speed, 
120 knots; out-of-flow microphone 12.2 m from tunnel centerl ine.  

0 DNW data (ref. 10) 

I Prediction (ref. 15) 

0 4 x 7-m conditions 

F igure  14.- Scaling of out-of-flow background noise  reduction due to test chamber 
acoustic  treatment. mnnel speed, 120 knots; A denotes nozzle e x i t  area. 
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Figure 15.- E f fec t  of r e b u i l t  fan  opera t ing  with 
a 27-percent speed reduction on out-of-flow 
background noise  of 4 x 7-m Tunnel. Tunnel 
speed, 120 knots. 
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Figure 16.- E f f e c t  of r e b u i l t  fan  on in-flow 
background noise of 4 x 7-m Tunnel. 
Tunnel speed, 120 knots. 
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Figure 17.- E f fec t  of r e b u i l t  f an  and test chamber acous t i c  t reatment  

on out-of-flow background noise  of 4 X 7-m Tunnel. Tunnel speed, 
120 knots;  out-of-flow microphone 5 m from tunnel  cen te r l ine .  
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Figure 18.- E f fec t  of r e b u i l t  fan  and acous t i c  t reatment  
on out-of-flow background noise  of 4 x 7-m Tunnel i n  
upstream path.  Tunnel speed, 120 knots;  out-of-flow 
microphone 5 m from tunnel  cen te r l ine .  
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Figure 19.- E f f e c t  of r e b u i l t  fan  and acoustic t reatment  
on out-of-flow background noise  of 4 x 7-m Tunnel i n  
downstream pa th .  Tunnel speed, 120 knots ;  out-of-flow 
microphone 5 m from tunnel  cen te r l ine .  
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20.- E f f e c t  of r e b u i l t  fan  and acous t i c  t reatment  
on out-of-flow background noise of 4 x 7-m Tunnel. 
Tunnel speed, 120 knots; out-of-flow microphone 5 m 
from tunnel  cen te r l ine .  
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Figure 21.- E f f e c t  of r e b u i l t  fan and acous t i c  treatment 
on in-flow background noise of 4 x 7-m Tunnel. 
Tunnel speed, 120 knots. 
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